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Abstract

The United States Air Force (USAF) officer sustainment system involves making

accession and promotion decisions for nearly 64 thousand officers annually. We formu-

late a discrete time stochastic Markov decision process model to examine this military

workforce planning problem. The large size of the motivating problem suggests that

conventional exact dynamic programming algorithms are inappropriate. As such, we

propose two approximate dynamic programming (ADP) algorithms to solve the prob-

lem. We employ a least-squares approximate policy iteration (API) algorithm with

instrumental variables Bellman error minimization to determine approximate policies.

In this API algorithm, we use a modified version of the Bellman equation based on the

post-decision state variable. Approximating the value function using a post-decision

state variable allows us to find the best policy for a given approximation using a

decomposable mixed integer nonlinear programming formulation. We also propose

an approximate value iteration algorithm using concave adaptive value estimation

(CAVE). The CAVE algorithm identifies an improved policy for a test problem based

on the current USAF officer sustainment system. The CAVE algorithm obtains a

statistically significant 2.8% improvement over the currently employed USAF policy,

which serves as the benchmark.
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APPROXIMATE DYNAMIC PROGRAMMING ALGORITHMS FOR

UNITED STATES AIR FORCE OFFICER SUSTAINMENT

I. Introduction

“The basic manpower problem is the following: Determine the number of
personnel and their skills that best meets the future operational require-
ments of an enterprise.” (Gass, 1991)

The United States Air Force (USAF) is comprised of approximately 330,000 per-

sonnel who enhance national security by providing the distinctive capabilities of air

and space superiority, global attack, rapid global mobility, precision engagement, in-

formation superiority, and agile combat support to the Department of Defense (DoD).

The USAF, like the other branches of the military, is comprised of commissioned of-

ficers as well as the enlisted force. These two groups exhibit significantly different

behaviors in regards to retention, promotion, and cross-flow between career fields.

This research investigates and attempts to discover improved policies regarding man-

agement of the commissioned officer corps.

The USAF must recruit, train, and develop its personnel using limited resources.

Over the last several years, the draw down from Operations Enduring Freedom and

Iraqi Freedom as well as shifting domestic priorities have resulted in significant cuts

to current and future outlays for acquisitions, operations, and personnel budgets.

Difficult fiscal conditions emphasize the importance of having the correct mix of

personnel to field a ready force. The USAF must balance the needs for officers of

varying levels of experience within 90 career fields ranging from personnel officers

to fighter pilots. Each of these career fields is labeled with an Air Force Specialty
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Code (AFSC). The USAF has a known set of requirements (i.e., demand) and known

Congressionally-mandated force size constraints.

Grades range from O-1 to O-10, with the grades O-7, O-8, O-9, and O-10 corre-

sponding to the ranks of General Officers. The model proposed in this thesis only

considers grades from O-1 to O-6, which comprise the vast majority of officers com-

prising the officer sustainment problem. Current USAF policy is a 100% promotion

rate from O-1 to O-2 and from O-2 to O-3. This policy is primarily due to long

training times and a limited performance record with which to differentiate junior

officers at these grades. Moreover, officers at the grades of O-1 and O-2 frequently fill

O-3 requirements. A complicating feature of the manpower planning problem faced

by the USAF is the fact that senior officers are developed from junior officers only,

with every recruited officer starting at the grade of O-1.

Due to these characteristics, poor personnel management decisions can have far-

reaching impacts and corrective actions can take a significant amount of time to

take effect. Economic factors and changes within the military environment such

as operations tempo, salary, and benefits such as health care and combat pay can

significantly impact retention rates (Asch et al., 2008; Murray, 2004). This can result

in a significant level of deviation in retention rates over time, resulting in a uncertain

supply of officers to meet USAF personnel requirements. These factors can make

predicting how a force structure will develop and progress a difficult process.

The current USAF personnel system determines the number of requirements for

each AFSC and grade combination. Additionally, ten years of historical data are

used to calculate retention rates for each combination of AFSC and number of com-

missioned years of service (CYOS). This information informs the development of a

retention line. This retention line assumes a deterministic retention based on his-

torical observations and no future deviation. The current model used to optimize

2



accessions smooths the total requirements for each AFSC over the projected reten-

tion line. Promotion decisions are made independently from the force optimization

model, so the accession decisions and promotion decisions are not tied together by

means of a holistic policy. By addressing only accessions policies with the static op-

timization model, such policies are unable to address any deviations from expected

outcomes over the 30 year window. Over time, these deviations can become large,

which has historically resulted in the use of significant measures to boost or lower

retention such as paying bonuses to keep people in (Lakhani, 1988; Simon & Warner,

2009) or reductions in force (RIFs) to decrease the size of the force. Deviations

compounded by changes in the desired force structure during times of build-up or

downsizing can exacerbate the level of correction needed.

While paying bonuses has an easily calculable cost, RIFs have more subtle costs.

Mone (1994) discovered that in a steady state organization, persons with low self-

efficacy are significantly more likely to depart the organization than the higher per-

forming persons with high self-efficacy. However, when an organization is actively

downsizing, the correlation is reversed. The high performers begin leaving signifi-

cantly more frequently than the lower performers. Additionally, Wong & McNally

(1994) showed during the force reductions in the US Army in the 1990s that organi-

zational commitment decreased significantly in the survivors of the RIFs, even when

the primary means used to trim the force were voluntary separations.

We formulate a Markov decision process (MDP) model to examine the Air Force’s

officer sustainment problem. MDPs have several features that make them particularly

suitable for this sort of workforce planning problem. An MDP can provide policies

that are state-dependent, which allows for a workforce system to correct over time.

State transitions can be modeled stochastically, allowing the MDP model to address

the uncertainty inherent in the personnel system.

3



The state of the system for this problem is found by aggregating individual officers

by class descriptors. The three class descriptors for the USAF officer sustainment sys-

tem are career field (AFSC), commissioned years of service (CYOS), and grade (i.e.,

rank). The state represents the current total stock of officers, categorized by each

possible combination of class descriptors. In each time period, individuals determin-

istically maintain their career field, stochastically transition either out of the system

or to the next CYOS according to a retention parameter, and stochastically transi-

tion either to the next grade or remain in their current grade according to promotion

rate decisions made within the model. The model provides a policy, π, given the

current state, that indicates the number of officers to recruit for each career field (i.e.,

accessions) as well as the percentage of officers within specified promotion windows

to be promoted. A single Line of the Air Force competitive category is examined, so

promotion policies apply to officers in a specified promotion window across all career

fields within the model. The contribution function imposes a cost for shortages of

officers by career field and grade as well as a cost for exceeding the maximum num-

ber of allowable officers. These costs are weighted to reflect the criticality of certain

AFSC and grade combinations.

The state space of the motivating problem of interest has 9,720 dimensions repre-

senting the full 54 Line of the Air Force AFSCs, 30 CYOS groups, and 6 grades. This

level of dimensionality combined with the stochastic nature of the state transitions

makes determining a stationary policy computationally intractable. The size of the

problem suggests that development of an exact dynamic programming algorithm to

obtain a solution is inappropriate.

In order to address the large size of the problem, two approximate dynamic pro-

gramming (ADP) algorithms are developed to obtain non-optimal but high quality

solutions. The first proposed algorithm uses least squares temporal differences with
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Bellman error minimization in an approximate policy iteration framework to obtain

policies. As part of the process, we simulate potential post-decision states and ob-

serve the value of a possible outcome of being in that state. After a batch of these

observations is simulated, a regression is performed utilizing instrumental variables to

minimize Bellman error. This algorithm uses a set of basis functions to approximate

the value of the post-decision state. This approximation scheme allows the formula-

tion of a non-linear mixed-integer program to solve the inner maximization problem,

obtaining optimal actions based on the current approximation. Algorithm variants

using instrumental variables regression and Latin hypercube sampling are examined.

We also use the Concave, Adaptive Value Estimation (CAVE) algorithm (Godfrey

& Powell, 2002) to develop separable piecewise linear value approximations that rep-

resent the ‘cost to go’ value function for a finite-horizon formulation of the problem.

This algorithm simulates potential outcomes of a given policy and uses the outcomes

to update the estimate of the gradients of the value function approximation. The

algorithm takes advantage of known problem structure to efficiently update the value

function approximation of large numbers of policies simultaneously.

The remainder of this thesis is organized as follows. In Chapter 2, a detailed back-

ground of the USAF officer sustainment problem and relevant techniques and models

is provided. Chapter 3 provides two problem formulations and the methodology used

to develop and evaluate the model. Chapter 4 describes and compares the results of

these models. Chapter 5 draws conclusions from these results.
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II. Literature Review

This chapter examines prior manpower and workforce planning models, force man-

agement issues, Markov decision process theory, and approximate dynamic program-

ming (ADP) theory. Prior manpower models have not typically used Markov decision

processes to model large scale workforce planning problems due to the computation-

ally intensive nature of the necessary calculations. Markov decision processes (MDP)

have been used for years by those in the operations research community to address

smaller discrete stochastic problems (Puterman, 1994). However, only recently has

the potential of this construct begun to be realized. With the advent of approximate

dynamic programming, the MDP construct can be applied to large, high-dimension

problems (Powell, 2009). Application of these techniques to highly dimensional man-

power and personnel problems has thus far been limited, although applications to

similar resource allocation problems are well documented.

2.1 Manpower Planning Models

Markov Chain Models.

The application of Markov chain theory is common when modeling dynamic be-

havior in discrete time, push-flow manpower systems, where transitions are deter-

mined by fixed rates from the originating state, as opposed to pull-flow manpower

systems where transitions are determined by vacancies to fill. Markov chains are typ-

ically used as descriptive models due to the lack of any mathematical programming

(Wang, 2005). The result of this simplicity is that the system cannot dynamically

alter these transitions internally if the result is unsatisfactory. In effect, the system

models a single fixed policy.
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Škulj et al. (2008) apply Markov chain theory to the Slovenian military manpower

problem. Škulj identified and tracked transition rates between states for five years,

then identified which transition rates could be adjusted. An iterative simulation was

run, during which a set of transitions (actions) was identified that resulted in a close

match to the desired force structure within four years. However, no static set of

transition functions were found to maintain the force structure at the desired levels.

Filinkov et al. (2011) use Markov chains to determine how sustainable current

Australian military force levels are for different possible future deployment require-

ments. Markov chains are used to model how a force develops over time given a

current set of policies. A series of deterministic equations are used to determine

the cost of a given outcome in terms of being able to sustain operational demands

associated with a variety of future scenarios.

McClean (1991) compares the application of Markov chains to semi-Markov re-

newal models. McClean notes that the Markov chain approach is oversimplified in that

it is limited to modeling a push system and requires assumptions that the probability

distributions of the underlying transitions are geometric or exponential. However,

renewal theory approaches are limited to modeling pull systems with constant grade

sizes and are mathematically intractable when applied to reasonably sized problems.

Kinstler et al. (2008) develop a Markov chain model to analyze the US Navy

nursing corps. Specific recruiting guidelines are identified as the cause of specified

rank imbalances. Tradeoffs between levels of rank imbalance and the ability to recruit

different ranks into the nursing corps are explored.

Simulation Models.

Simulation models are a valuable tool for assessing the results of different behav-

iors or policies within a system that may be too complex for analytical models such

7



as Markov chains. However, like Markov chains, simulations are primarily a descrip-

tive tool instead of an optimizing tool. Moreover, stochastic simulations often face

significant problems with auto-correlation in the output which may require advanced

statistical analysis to interpret, given the variability internal to the model (Wang,

2005).

McGinnis et al. (1994) construct a simulation of the US Army officer professional

development system to determine impacts of changes to the legal requirements for

promotion due to Title IV of the Defense Reorganization Act of 1986. Their sim-

ulation is designed to evaluate potential changes to laws, policies, or internal force

structure actions and inform senior personnel leaders of the consequences of these

changes.

RAND uses the PILOT model to simulate how pilots are developed and trained

(Mooz, 1969). The model determines the impacts of changing pilot demand levels for

different aircraft systems. When the requirements for pilots of one type of aircraft

increase, some pilots are transitioned from other aircraft, requiring different levels

of retraining to become proficient. These transitions result in increased demand for

pilots from both the aircraft being expanded as well as the aircraft supplying more

experienced pilots. The PILOT model uses simulation to determine what resources

are required in terms of cost, training crews, and training aircraft in order to meet

potential levels of demand.

Network Flow Models.

Network flow models are another useful tool for lower dimensional problems (Gass,

1991). Network flow models have the benefit of being easy to visualize and compre-

hend for the non-technical decision maker. Gass (1991) shows that several manpower

problems can be formulated as a general minimal-cost transshipment (flow) network.
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A significant limitation of this approach is that while different flows may enter a node,

these flows have only a common identifier when exiting the node. This results in a

level of aggregation that may not be acceptable to all problem sets.

Mulvey (1979) compares the results of applying a network flow model, an integer

program, and a simplified aggregate model to a manpower scheduling problem. The

integer program is shown to require more information to implement than the net-

work model; however, the integer program handles a wider variety of scenarios. The

network flow model is easier to implement and simpler computationally.

System Dynamics Models.

System dynamics (SD) models allow the examination of continuous flows over time

by incorporating feedback loops to model interactions between different structures.

This technique relies heavily on the development of the appropriate equations to

model the system (Wang, 2005).

Thomas et al. (1997) provide a system dynamics model as an alternative to a

suite of tools used for US Army enlisted personnel management. A key benefit of

this approach is the ability to generate causal loop diagrams to verify elemental

assumptions within the model. However, this model is limited to analyzing aggregated

behavior instead of differentiating by career field, grade, and time in service, which

would significantly increase the level of intricacy of the required equations. The

system dynamics approach for aggregated enlisted behavior is validated by replication

of historical scenarios.

Optimization Models.

Optimization techniques such as linear programming (LP), integer programming

(IP), goal programming (GP), and dynamic programming (DP) do provide methods
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to find optimal solutions, but face significant limitations in their ability to handle

certain classes of problems (Wang, 2005). Linear programming and integer program-

ming are limited to minimizing or maximizing a single objective function and can be

limited in their ability to handle stochastic problems. Dynamic programming, often

formulated as a Markov Decision Process, is a powerful tool for handling sequential

decision making under uncertainty, but can require significant expertise to formulate

(Wang, 2005) and is computationally intensive for most real world problems (Powell,

2012). Dynamic programming has historically performed well for problems requiring

a sequential allocation of resources.

Workman (2009) builds a linear program to optimize recruitment and promotion

in order to develop an indigenous security force. This model replaces basic heuristics

used previously with a single model that incorporates the entire enlisted and officer

force across several scenarios. The model is demonstrated with current data from

the Afghan National Army and provides key insights on the feasibility of potential

courses of action.

The Manpower Long Range Planning System (MLRPS) (Gass et al., 1988) uses

Markov chains and linear programming to project and optimize the strength of the

US Army over planning horizons of 10 and 20 years. This model has been used

by the Army Office of the Deputy Chief of Staff of Personnel to determine which

policy changes are required in order to meet force structure requirements. The 20

year horizon Manpower Planning Model differentiates the force according to grade

and time in service indices and calculates the optimal long term policies to shape the

total force. The 10 year horizon Manpower Requirements Model differentiates the

force according to grade and skill indices and calculates the optimal policies to meet

career field demands over the intermediate term.

Corbett (1995) constructs the Officer Accession/Branch Detail Model (OA/BDM),

10



a goal programming model to optimize accessions for US Army’s Officer Personnel

Management Directorate. Analysis of outputs from OA/BDM indicates that assump-

tions and the corresponding recommendations of the previous manpower planning

program are optimistically biased. OA/BDM is also used to analyze potential courses

of action to correct unbalanced overages of junior officers.

The Accession Supply Costing and Requirements Model (ASCAR) is a goal pro-

gramming model that optimizes enlisted recruitment into the US Armed Forces across

all branches of service (Collins et al., 1983). ASCAR was used by the Congres-

sional Budget Office and the Office of the Secretary of Defense to successfully predict

whether the military would be able to simultaneously meet personnel quality goals

and total end strength goals as it transitioned to an all-volunteer force.

Charnes et al. (1972) utilize a goal programming model for General Schedule

civilian manpower management in the US Navy. This goal programming model op-

timizes recruitment based on requirements and cost and significantly improves the

ability to optimize these factors in the presence of truncational effects such as retire-

ment. Charnes et al. (1972) demonstrate their results with a hypothetical numerical

illustration.

Dimitriou et al. (2013) use multivariate Markov chains to model a workforce tran-

sitioning within and between different departments or subgroups in a hierarchical

personnel structure. This construct allows the user to evaluate the consequences of

different training courses and preparation classes. Goal programming techniques are

then used to achieve a desirable structure at minimum cost.

Grinold (1976) uses dynamic programming with embedded Markov chains to con-

struct an optimal policy for naval aviator recruitment. Markov chains determine the

future demand for personnel. To optimize the decisions to meet forecasted demands,

Grinold (1976) uses a linear-quadratic optimal control problem, which is a special
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form of Markov decision process. The linear-quadratic optimal control problem pro-

duces an optimal decision rule for any finite planning horizon that is a linear function

of existing manpower stocks.

Approximate Dynamic Programming.

Approximate dynamic programming extends many of the benefits of dynamic pro-

gramming to problems where solving the DP is computationally intractable (Powell,

2012). Approximate dynamic programming uses Monte Carlo simulation to sample

possible outcomes of a given model and find an approximate solution using an esti-

mated future cost function. Many approximate dynamic programs have been proven

to converge to the true optimal solution if the number of sampling iterations is suffi-

ciently large.

Song & Huang (2008) use a basic Successive Convex Approximation Method

(SCAM) as well as a modified SCAM algorithm to approximate value functions for

a multi-stage workforce problem with stochastic demand. Their algorithm creates a

piecewise linear approximation of the value of hiring, firing, or transferring personnel

for different departments with stochastic flows between departments and out of the

system. The algorithm is shown to provide solutions with near-optimal values for

problems small enough to be solved exactly to make the solution quality comparison.

2.2 Approximate Dynamic Programming Techniques

Dynamic programming has been demonstrated to optimize stochastic problems

exceptionally well. The foundation of dynamic programming is the Bellman Equa-

tion, which provides the basis for determining actions, x, that maximize expected

immediate contributions due to the state of the system at time t, St, and actions

taken, C(St, x), as well as expected future contributions (Bellman, 1955). The value
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of these expected future contributions is captured by the expected value of the po-

tential states to which the system may transition, V (St+1)|St. The discount factor,

γ, is used to weight the value of immediate contributions compared to contributions

in the future. The Bellman equation is as follows:

V (St) = max
x

E[C(St, x) + γV (St+1)|St], (1)

where V (St) is the value of the current state.

The primary drawback of dynamic programming for large scale manpower ap-

plications is the complexity inherent in computing expectations in the presence of

multi-dimensional data. Problems with computational complexity due to dimensional

data are commonly referred to as the “curse of dimensionality” (Bellman, 1957) or

alternately the “three curses of dimensionality”. The three curses refer to problems

arising from dimensionality in the state space, action space, and outcome space of a

problem. Since dynamic programming relies on explicitly computing every possible

combination of events and the value associated with this occurrence, even small levels

of dimensionality can result in significant computational problems.

Approximate dynamic programming techniques are applied to solve many prob-

lems that are well suited to a dynamic programming approach, but are computa-

tionally intractable. Several techniques used in combination allow for near-optimal

solutions to problems that cannot be fully evaluated by dynamic programming algo-

rithms. ADP can resolve problems arising from dimensionality by utilizing a sampling

technique to estimate an approximation of the value of a policy instead of finding the

exact expectation of the value (Bellman & Dreyfus, 1959; Powell, 2009).

A critical difference between dynamic programming and approximate dynamic

programming is the use by ADP of a forward pass with Monte Carlo simulation of

possible random outcomes to determine values of states and actions. ADP provides
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an approximate valuation and near-optimal solution, though many algorithms have

been proven to converge to an optimal solution if the states are sampled sufficiently

often (Ahner & Parson, 2014; Powell, 2007).

While Monte Carlo simulation relieves the problem of exactly solving for values

of each state and action combination, many problems still experience significant com-

binatorial effects even from approximately solving for those values. Fortunately, by

adapting the formulation of the problem to use a post-decision state, Sxt , much of this

combinatorial effect can be alleviated. The post-decision state can more compactly

represent the possible outcomes without losing any information for many problems

(Van Roy et al., 1997). The value of the post-decision state, V x(Sxt ), is expressed as

follows:

V x(Sxt ) = E[V (St+1)|Sxt ]. (2)

The following adaptation to the Bellman equation is made to make use of this powerful

concept:

V x
t−1(Sxt−1) = E

[
max
x

C(St, x) + γV x
t (Sxt )|Sxt−1

]
. (3)

For highly dimensional problems, assigning values to every state is not compu-

tationally feasible, even with the advantages described above. To circumvent this

limitation, value function approximations are used to compactly represent values of

a large number of states. Approximate dynamic programming algorithms use these

functions to take advantage of structure within the problem and efficiently learn about

a large number of state spaces without visiting each possible outcome. Using a value

function approximation in combination with approximate policy iteration is an effec-

tive method to learn about the value of different states while periodically using that

information to improve the optimal policy (Powell, 2012).
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Approximate Policy Iteration (API).

Approximate policy iteration fixes a specified policy and evaluates potential states

and outcomes associated with that policy. This information is then used to update

the policy and reevaluate. API using parametric modeling with linear basis functions

has received a great deal of attention for its ability to use linear regression to derive

information from a series of observations. These basis functions, also known as inde-

pendent variables, covariates, or features, must be carefully selected for the algorithm

to effectively approximate the value function (Bertsekas & Tsitsiklis, 1995). The se-

lected set of basis functions is annotated F , with individual features f ∈ F . The

crux of parametric modeling is to project the true value function onto the space of

the basis functions. If the basis functions are not appropriate to the problem and the

true function does not lie within the span of the basis functions, the approximation

cannot converge to the true value function (Scott et al., 2014). Use of these basis

functions results in the following modification to the value of the post-decision state

in the Bellman equation:

V̄ x
t (Sxt ) =

∑
f∈F

θfφf (S
x
t ) = θTφ(Sxt ), (4)

where θ is the vector of weights, (θf )f ∈ F , associated with the basis functions. The

vector of basis function values for a post-decision state Sxt are then defined by φf (S
x
t ).

When using the parametric modeling approach, the selection of the optimal deci-

sion is adapted. For a given weight vector θ, the policy Xπ(St|θ) is given by:

Xπ(St|θ) = arg max
x

[C(St, x) + γθTφ(Sxt )]. (5)

Equation 2.5 is referred to as the inner maximization problem. This problem

is solved by a linear or non-linear program, depending on whether any non-linear
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features have been selected as a part of φ(Sxt ). In the case of a cost function as

opposed to the contribution function outlined above, the problem is treated as a

minimization problem and the equation is modified as follows:

Xπ(St|θ) = arg min
x

[C(St, x) + γθTφ(Sxt )]. (6)

Least squares temporal differences with Bellman error minimization is an exten-

sion of parametric modeling for infinite horizon problems in which the contributions

of a number of potential states are evaluated while a policy is fixed according to an

initial estimate of a set of parameters, θ (Bradtke & Barto, 1996). Lagoudakis & Parr

(2003) extends this algorithm to use a linear architecture to approximate state-action

pairs in high dimension problems. Bellman error captures the difference between

the value function approximation and the observed values being approximated. This

method evaluates the value of being in a state as the observed contribution summed

with the discounted value of the resulting post-decision state based on the parameter

θ (Scott et al., 2014).

The matrix Φt−1 (see Equation 7) records the numerical value of the basis functions

for N sampled post-decision states, while the matrix Φt records the resulting post-

decision state after information has been received and a policy has been implemented.

Additionally, the observed contributions are recorded in a vector Ct:

Φt−1 =


φ(Sxt−1,1)T

...

φ(Sxt−1,N)T

 ,Φt =


φ(Sxt,1)T

...

φ(Sxt,N)T

 , Ct =


Ct,1

...

Ct,N

 . (7)

Ordinary least squares regression is performed to identify the impact each feature
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has on the observed contributions:

θ̂ = [(Φt−1 − γΦt)
T (Φt−1 − γΦt)]

−1(Φt−1 − γΦt)
TCt. (8)

Least squares approximate policy iteration with instrumental variables Bellman

error minimization is an efficient technique to obtain a consistent estimate of θ with-

out modeling the noise of the system (Bradtke & Barto, 1996; Scott et al., 2014).

Instrumental variables are used to reduce noise within an approximate policy itera-

tion algorithm because they are correlated with the regressor and uncorrelated with

the errors and observations (Ma & Powell, 2010). Equation 2.9 shows the modified

instrumental variables regression equation as presented by Scott et al. (2014).

θ̂ = [(Φt−1)T (Φt−1 − γΦt)]
−1(Φt−1)TCt. (9)

Approximate Value Iteration (AVI).

An alternative to the API with a parametric modeling approach is the use of ap-

proximate value iteration. As opposed to API, where policies are fixed and then eval-

uated, AVI continually refines the value approximation and immediately updates the

current policy accordingly. Use of separable piecewise linear approximations within

an AVI framework has garnered significant attention due to their ability to map a

wide variety of value functions.

The Separable Projective Approximation Routine (SPAR) algorithm (Powell, 2007)

is an effective piecewise linear approximation method. SPAR samples values of states

and uses a monotone structure to update the value function approximation for many

states at once. Any slope approximations that violate monotonicity are averaged

with the updated value to maintain structure. A key benefit to SPAR is its proof of

convergence, as demonstrated by Powell (2007).
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The Stochastic Hybrid Approximation Procedure (SHAPE) algorithm differs from

SPAR in that it uses a nonlinear approximation of the value function (Cheung &

Powell, 2000). This nonlinear approximation is updated by iteratively sampling the

stochastic system to update the gradients of the value function. For this algorithm to

be effective, a close initial approximation is critical. While not a separable piecewise

linear approximation, SHAPE is closely related to SPAR and other piecewise linear

value function approximation algorithms in that the algorithm uses stochastic gradi-

ent sampling and takes advantage of a known problem structure to develop a value

approximation.

The Concave, Adaptive Value Estimation (CAVE) algorithm is very similar to

the SPAR algorithm, but uses a different technique to correct monotonicity violations

and can be applied to monotonicity of slopes for concave value functions (Godfrey

& Powell, 2002). Instead of using averages to correct monotonicity or concavity, the

CAVE algorithm expands the area being updated by the new information. Though

the general CAVE algorithm does not have a convergence proof, variations of the

CAVE algorithm have been proven to converge (Topaloglu & Powell, 2003; Ahner &

Parson, 2014), and CAVE has been shown to outperform SPAR for many problems

(Godfrey & Powell, 2001). CAVE has been applied with significant success to a

number of high dimension weapon target allocation and resource allocation problems

with stochastic demand.
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III. Methodology & Problem Formulation

3.1 MDP Formulation

The purpose of this formulation is to provide a framework for an executable model

to find the best possible policy. This policy is found by minimizing the cost of the

defined objective function. This objective function is comprised of the cost of the

current state as well as the expected future cost of states resulting from a combination

of the current state and chosen actions. The actions selected are the accessions and

promotion decisions for the following year, so the cost associated with the combination

of the current state and action, typically defined as C(S, x), is not affected in the

present by the action x. Thus, the current contribution is defined by C(S), and the

consequence of a given decision is captured by the expected value of future states. The

objective for the infinite horizon formulation is to minimize expected total discounted

cost, with the objective function defined as:

min
π∈Π

(
Eπ
[ ∞∑
t=0

γtC(St)
])
, (10)

where γ is the discount factor, π is a single policy, and Π is the set of all possible

policies.

The alternative finite horizon objective function is defined as:

min
π∈Π

(
Eπ
[ T∑
t=0

C(St)
])
, (11)

The USAF officer sustainment problem is constructed such that a single set of

requirements and transition rates is assumed valid for any future time period. The

parametric modeling formulation of the system is constructed as an infinite time

horizon problem with annual increments. This avoids calculating a separate value for
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an identical state in a different time period. The set of decision epochs is denoted as:

T = {1, 2, ...}. (12)

For the separable piecewise linear formulation, a distinct value approximation for each

decision must be developed for each time period, so the problem is constructed as a

finite horizon problem with T annual increments:

T = {1, 2, ..., T}. (13)

The state of each officer in the system is defined by an attribute vector a, composed

of three numerical attributes. These attributes are numerical indices representing

AFSC, grade, and CYOS. Due to the grade structure described in Chapter 1, this

model consolidates the three initial grades into one index of the grade class descriptor,

leaving four grades modeled. Additionally, the AFSCs are limited to the Line of

the Air Force competitive category. This group consists of 54 AFSCs and contains

approximately 80% of the officers in the USAF. The excluded AFSCs include medical,

dental, legal, and chaplain career fields, whose behavior and constraints are sufficiently

different to warrant a separate model.

Let the attribute vector a denote a specified combination of these three attributes,

denoted as a1, a2, and a3:

a =


a1

a2

a3

 =


AFSC

Grade

CYOS

 . (14)
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The individual sets containing all iterations of a single attribute h are annotated as:

Ah = Set of all possible officer attributes ah. (15)

The full set, A, for the general problem contains the full range of possible combina-

tions of m AFSCs, n grades, and q CYOSs. For the full problem examined, these

values are 54, 4, and 30, respectively.

A = Set of all possible officer attribute vectors a, where |A| = mnq. (16)

The state of the USAF personnel system is defined by the number of resources (of-

ficers) of each attribute vector, a. Denote Sa,t as the number of officers possessing

attributes as defined by the attribute vector a.

Sa,t = number of resources at time t for attribute vector a. (17)

The pre-decision state is a vector of size |A|, which is defined as St = (Sa,t)a ∈ A,

expressed in vector form as:

St = [S1,1,1, S1,1,2, ..., S1,1,q, S1,2,1, ..., S1,n,q, S2,1,1, ..., Sm,n,q], (18)

where the subscript t is suppressed for each Sa1,a2,a3 for notational simplicity.

There are m + n decisions made annually, defined by the set D. Decisions

{1, 2, ...,m} are the accessions decisions for each AFSC, determining how many peo-

ple to recruit as junior officers. Decisions {m+ 1,m+ 2, ...,m+ n− 1} are decisions

on the ratio of eligible officers to promote. For the full problem, m = 54 and n = 4.

21



The action selected is defined by:

Xt = (Xd,t)d∈D. (19)

Additionally, there are upper bounds, βd, and lower bounds, ζd, for each decision,

as specified by the decision maker. For the accession decisions, these bounds arise out

of pipeline considerations, such as training constraints or minimum training levels to

sustain facilities. For the promotion decisions, extremely high or low values can have

significant secondary effects on the quality of the force.

βd ≤ Xd,t ≤ ζd ∀d ∈ D. (20)

A deterministic transition is made from pre-decision to post-decision state, Sxt ,

with each non-promotion eligible group moving to the next CYOS index or retiring.

Accessions fill the first year group (CYOS) index for each AFSC and promotion

policies are attached at the end, increasing the vector size by n− 1. The promotion

policies are included in the post-decision state because this policy determines the next

transition, but the information ω as to what stochastic result this policy will generate

has not been received yet. The states with the CYOS index associated with the first

year of a potential grade (i.e., new promotions) are set to zero, since these will be

filled by the stochastic promotion transitions. The post-decision state vector is then

defined by:

Sxt =[X1, S1,1,1, S1,1,2, ..., S1,1,q−1, 0, S1,2,1, ..., S1,n,q−1, X2,

..., Sm,n,q−1, Xm+1, ..., Xm+n]. (21)

Again, the subscript t is suppressed for each Sa1,a2,a3 for notational simplicity.
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The cost function, C, is defined by the total sum of the shortages by grade and

AFSC and the overages above the maximum number of personnel allowed in the

system (i.e., the end strength). To differentiate between the criticality of shortages for

various AFSCs, an AFSC criticality coefficient, (ba1)a1∈A1 is used to scale the shortage

cost for each AFSC. Requirements by AFSC (a1) and grade (a2) are annotated as

(Ra1,a2)(a1,a2)∈A1×A2 for all combinations of a1 and a2. Let F denote the maximum end

strength and let e denote the end strength criticality coefficient. The end strength

criticality coefficient allows weighting the relative importance of end strength and

shortages using decision maker preferences. Let CH and CE denote the cost due to

shortage and end strength, respectively. Then,

CH(S) =
m∑

a1=1

n∑
a2=1

ba1

(
Ra1,a2 −

q∑
a3=1

Sa

)+

, (22)

and

CE(S) = e

((
m∑

a1=1

n∑
a2=1

q∑
a3=1

Sa

)
− F

)+

. (23)

Let C(S) denote the total cost associated with a given state, which is simply the sum

of the two partial costs, CH and CE:

C(S) =
m∑

a1=1

n∑
a2=1

ba1

(
Ra1,a2 −

q∑
a3=1

Sa

)+

+ e

((
m∑

a1=1

n∑
a2=1

q∑
a3=1

Sa

)
− F

)+

. (24)

Promotion and retention transitions are treated as discrete stochastic functions,

each following a binomial distribution. The probability of any eligible individual

transitioning to the next highest grade is determined by the promotion decisions Xd

for d = {m+ 1,m+ 2, ...,m+ n− 1}:

Pr(Sxa1,a2+1,a3
= j) =

(
Sxa1,a2,a3

j

)
(Xd)

j(1−Xd)
Sx
a1,a2,a3

−j. (25)
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Those who are not selected for promotion remain in their current grade. After all

promotion transitions are complete, the probability of any individual transitioning

to the next year group (CYOS) within the individual’s current grade and AFSC is

defined by the retention parameter, ρa, that can be derived from historic data and an

environmental parameter. This additional environmental parameter can be used to

scale historic retention rates to reflect beliefs about changing conditions in the future,

such as economic and operations tempo impacts to force retention.

Pr(Sa,t+1 = j) =

(
Sxa,t
j

)
(ρa)

j(1− ρa)S
x
a,t−j. (26)

Finally, the promotion decisions are no longer necessary, so the last n indices of

the post-decision state are dropped as the transition back to a pre-decision state is

completed.

3.2 Approximate Dynamic Programming Algorithms

API: Least Squares Temporal Differences.

Once the MDP is formulated, an iterative least squares approximate policy itera-

tion algorithm with ordinary least squares Bellman error minimization is implemented

to find solutions to the implemented formulation. Algorithm 1 is an adapted version

of the algorithm presented by Scott et al. (2014).

At each iteration, θ is smoothed according to a step size, α. Experimentation

revealed a linearly decreasing stepsize significantly outperforms a static stepsize. This

allowed rapid updates early in the algorithm while benefiting from a more refined

estimation as the algorithm converged to a solution.

The selected basis functions (features) are the interactions between decisions taken

to some power ψ and the sums of the states Sa for various combinations of attributes.
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Algorithm 1 LSTD Algorithm

1: Initialize θ as a vector of zeros.
2: for j = 1 to M (Policy Improvement Loop)
3: Update α = (M − j + 1)/(5M)
4: for i = 1 to N (Policy Evaluation Loop)
5: Simulate a random post-decision state Sxt−1,i

6: Simulate the transition to the pre-decision state St,i
7: Solve MINLP for optimal decision Xπ(St|θ) = arg minx[C(St) +γθTφ(Sxt )]
8: Record C(St,i), φ(Sxt−1,i), and φ(Sxt,i)

9: End
10: Compute θ̂ = [(Φt−1 − γΦt)

T (Φt−1 − γΦt)]
−1(Φt−1 − γΦt)

TCt
11: Update θ = (α)θ̂ + (1− α)θ

12: End

This selection helps the algorithm relate current states to potential actions and keeps

the problem decomposable. For any given pre-decision state, the inner minimization

problem becomes:

min
X

Z1X1 + Z2X
2
1 + ...+ ZψX

ψ
1 + Zψ+1X2 + ...+ Zψ(m+n−1)X

ψ
m+n−1, (27)

subject to any pre-defined bounds on decisions, βd and ζd. Each coefficient Zg is

determined by a number of current states and the parameter θ. The inner minimiza-

tion problem is a large, decomposable mixed-integer nonlinear program with integer

decisions (Xd,t) for all d ≤ m and continuous decisions Xd,t for all d > m. Decom-

posability allows separation into m small integer nonlinear programs and n− 1 small

continuous nonlinear programs. Each of these problems is solved easily.

As discussed in Chapter 2, instrumental variables have been demonstrated to sig-

nificantly improve regression performance. Scott et al. (2014) present this adaptation

to the LSTD algorithm with ordinary least squares regression by changing Step 9 in

Algorithm 1 to reflect the alternative regression equation. The modified algorithm is

presented as Algorithm 2:

Many approximate policy iteration algorithm implementations use uniform ran-
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Algorithm 2 LSTD Algorithm with Instrumental Variables

1: Initialize θ as a vector of zeros.
2: for j = 1 to M (Policy Improvement Loop)
3: Update α = (M − j + 1)/(5M)
4: for i = 1 to N (Policy Evaluation Loop)
5: Simulate a random post-decision state Sxt−1,i

6: Simulate the transition to the pre-decision state St,i
7: Solve MINLP for optimal decision Xπ(St|θ) = arg minx[C(St) +γθTφ(Sxt )]
8: Record C(St,i), φ(Sxt−1,i), and φ(Sxt,i)

9: End
10: Compute θ̂ = [(Φt−1)T (Φt−1 − γΦt)]

−1(Φt−1)TCt
11: Update θ = (α)θ̂ + (1− α)θ

12: End

dom sampling of possible post-decision states in step 4. To improve the ability of the

parametric regression to separate the effects of each basis function (i.e., feature) on

the value function, Algorithm 3 uses Latin hypercube sampling (LHS) to generate

an improved set of post-decision states. LHS designs help ensure uniform sampling

across all possible dimensions thereby improving the ability of the regression to iden-

tify which regressors are significantly affecting the cost function (McKay et al., 1979).

The adapted algorithm with both instrumental variables and Latin hypercube sam-

pling is shown in Algorithm 3.

Algorithm 3 IVLSTD Algorithm with Latin Hypercube Sampling

1: Initialize θ as a vector of zeros.
2: for j = 1 to M (Policy Improvement Loop)
3: Construct an LHS design of N post-decision states, [Sxt−1,1, S

x
t−1,2, ..., S

x
t−1,N ]

4: Update α = (M − j + 1)/(5M)
5: for i = 1 to N (Policy Evaluation Loop)
6: Identify the pre-defined post-decision state Sxt−1,i

7: Simulate the transition to the pre-decision state St,i
8: Solve MINLP for optimal decision Xπ(St|θ) = arg minx[C(St) +γθTφ(Sxt )]
9: Record C(St,i), φ(Sxt−1,i), and φ(Sxt,i)

10: End
11: Compute θ̂ = [(Φt−1)T (Φt−1 − γΦt)]

−1(Φt−1)TCt
12: Update θ = (α)θ̂ + (1− α)θ

13: End
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AVI: Concave Adaptive Value Estimation.

The alternative finite horizon formulation of the problem is solved using a version

of the general CAVE algorithm proposed by Godfrey & Powell (2002). Godfrey &

Powell use this algorithm to develop a piecewise linear value function approximation

for a single state, V̂ (s) for future costs, given the current state and action. We adapt

this convention to develop a value function approximation for each decision, Xdt ,

which is equivalent to the corresponding portion of the post-decision state, Sxa1,1,1, for

dt = a1 as well as the promotion decisions.

This algorithm uses a series of breakpoints indexed by kdt , where kdt ∈ Kdt , and

Kdt = {0, 1, ..., kmax}. kmax represents the maximum number of allowable breakpoints.

These breakpoints are annotated (νkdt , ukdt ), where νkdt describes the slope of a linear

segment projected from ukdt .

Figure 1. CAVE Piecewise Linear Value Approximation

The breakpoints ukdt are ordered such that u1 ≡ 0 and each consecutive point is

monotonically increasing:

u0 < u1 < ... < ukmax . (28)
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The presence of concavity in the problem structure indicates that the slopes are also

monotonically decreasing:

ν0 > ν1 > ... > νkmax . (29)

CAVE uses sampling of the gradients for each decision to improve its estimate of

the slope for that approximation. This sampling is accomplished by a single simula-

tion forward in time, calculating the sample gradients ∆−dt(Xdt) and ∆+
dt

(Xdt) for the

segments being evaluated, k−dt and k+
dt

.

Figure 2. CAVE Gradient Sampling

A smoothing interval, Qdt for each dt is initially set based on upper and lower

interval size parameters, ε−dt and ε+dt . This update interval is then expanded to correct

any concavity violations. If necessary, new breakpoints are inserted at the ends of

the update interval.
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Figure 3. CAVE Gradient Update

After all of these steps are accomplished, the minimum update interval parameters,

ε−dt , ε
+
dt

can be decreased to allow the algorithm to create a more granular approxi-

mation at the next time step. The step size, α can also be decreased as iterations

are completed to improve value approximation convergence. The CAVE algorithm as

adapted from Godfrey & Powell (2001) to the multiple decision, multiple time period

problem is as follows:
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Algorithm 4 CAVE Algorithm

Step 1: Initialization
1: For each dt, let Kdt = 0, where νdt = 0, udt = 0.
2: Initialize parameters ε−dt , ε

+
dt

, and α.

3: for j = 1 to M
Step 2: Collect Gradient Information

4: For each dt, identify the policy specified by the current value function
approximation, Xdt ≥ 0.

5: For all decisions simultaneously, sample the gradients ∆−dt(Xdt , ω) and
∆+
dt

(Xdt , ω) over a finite time horizon with random outcome ω ∈ Ω

Step 3: Define Smoothing Interval

6: Let k−dt = min{kdt ∈ Kdt : ν
kdt
dt
≤ (1− α)ν

kdt+1

dt
+ α∆−dt(Xdt)}.

7: Let k+
dt

= max{kdt ∈ Kdt : (1− α)ν
kdt−1

dt
+ α∆+

dt
(Xdt) ≤ ν

kdt
dt
}.

8: Define the smoothing intervalQdt =

[
min{Xdt − ε−dt , u

k−dt
dt
},max{Xdt + ε+dt , u

k+dt
+1

dt
}
)

.

If u
(k+dt

+1)

dt
is undefined, then set u

(k+dt
+1)

dt
=∞

9: Create new breakpoints at Xdt and the endpoints of Qdt as needed. Since a
new breakpoint always divides an existing segment, the segment slopes on
both sides of the new breakpoint are the same initially.

Step 4: Perform Smoothing
10: For each segment in the interval Qdt , update the slope according to

νkdt,new = α∆dt + (1− α)νkdt,old, where ∆dt = ∆−dt(Xdt) if ukdt < Xdt and
∆dt = ∆+

dt
(Xdt) otherwise.

11: Adjust ε−dt , ε
+
dt

, α according to step size rules.

12: End
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IV. Results

4.1 Defining Model Inputs and Measures

Four performance measures provide an overview of each algorithm’s level of success

for each of three problem instances that are examined. For the problem instance

solved exactly with dynamic programming, results for the ADP algorithms and the

benchmark policy are reported in terms of mean percentage increase in cost over the

optimal policy values across all possible states. Mean relative optimality gap (MROG)

is reported for reduction in cost in the small problem instance. Mean relative increase

in shortages, overages, and squared deviation are also reported to allow for a more

nuanced insight into the overall desirability of a given policy. A modified form of

these measures are used to compare ADP policies to the benchmark (i.e., current

model) policies for problems large enough to require simulation to evaluate. For

these problem instances, percentages for the ADP algorithms are reported in terms

of percentage improvement (i.e., decrease in cost) over the benchmark policy. We

perform 50 simulations covering 50 years each, with each simulation beginning at an

optimal state (i.e., no shortages or overages). Half-widths are reported at the 95%

confidence level to establish statistical significance. Percent reduction in shortages

(RIS), percent reduction in overages (RIO), percent reduction in cost (RIC), and

percent reduction in total squared deviation (RSD) are reported. RIC, like MROG,

is a direct comparison of performance regarding the objective function.

For implementations of the LSTD algorithm applied to the first two problem in-

stances, the inner and outer loop parameters use M = 30 and N = 10000. The

discount factor, γ, is set at 0.95. For each of the models, the end strength critical-

ity coefficient, e, and AFSC criticality coefficients, (ba1)a1∈A1 , are set equal to one.

Additionally, the benchmark policy is calculated using the HAF/A1 method used to
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generate the benchmark policy.

For the CAVE algorithm, T is set to twice as large as the maximum career length.

This helps correctly assess the overages and shortages at the end of the career for the

decisions being made. For the decisions at a time epoch to be reasonably represen-

tative of the decisions that will actually be made in the future, the impacts of those

decisions are measured over a significant number of epochs. The decisions made at the

end of a finite time horizon model will be biased, since the model’s reality is that only

a short number of years are relevant, while the USAF has an enduring requirement

for officers. Thus, T must be significantly larger than the maximum career length in

order to obtain accurate and unbiased stochastic gradient samples.

4.2 Small Problem Instance Definition & Results

The small problem instance is formulated with a single AFSC (m = 1), single

grade (n = 1), and four year groups (q = 4). Additionally, the upper accession limit

is set at 6 (ζd = 6 for d = 1). For the finite horizon CAVE algorithm, T = 8.

This small problem allows for a direct comparison of ADP and benchmark policies

to the optimal policy, but fails to replicate a significant amount of the complexity

inherent in larger instances of the problem. Additionally, with an effective career

length of four years, random deviation is less likely to have a chance to compound and

create significant shortage and overage costs for a static policy compared to a system

in which the effective career length is much longer. The results bear this assertion out,

with the benchmark policy beating all ADP policies tested by a significant margin.

As demonstrated in Table 1, the first order basis functions perform poorly for all

algorithm variants and the higher order basis functions generally performed better.

Results in each Table 1 are shaded on a color scale from green (good) to red (bad).

As expected, the addition of instrumental variables and Latin hypercube sampling
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generally improve algorithm performance, with the exception of the variant using

third order basis functions. Of note, repeated runs did not consistently converge to

similar solutions in terms of θ or solution quality, which points to potential problems

with the selected basis functions. Given that good solutions consistently performed

well, ten runs of each algorithm were performed, and the best performing solution

was retained. This technique was utilized for the larger problem instances as well.

This divergent characteristic did introduce significant variance in the performance of

the LSTD algorithms throughout.

Table 1. LSTD Optimality Gap (Small Problem Instance)

The CAVE algorithm outperforms each of the LSTD algorithm variants, as shown

in Table 2. Of note is the level of performance of the non-objective function measures.

Each of the algorithms generally decreased accessions, leading to increased numbers

of overages and decreased numbers of shortages. The rationale for the benchmark

policy is demonstrated clearly by the benchmark policy’s high level of performance.

Table 2. ADP Optimality Gap (Small Problem Instance)
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4.3 Medium Problem Instance Definition & Results

A larger problem instance was examined to allow for a level of complexity that

could not be obtained with a problem that could be solved to optimality while keep-

ing the problem simple enough to easily validate the performance of the various

algorithms being compared. This medium-sized problem instance was constructed

with four AFSCs (m = 4), three grades (n = 3), 15 CYOSs (q = 15), and a upper

accession limit of 50 accessions, (ζd = 50 for d ≤ 4). With multiple grades, promotion

decisions are now assessed to determine transition rates from one grade to another.

We examine 30 time epochs when implementing the CAVE algorithm (T = 30).

As this problem instance was examined, repetitions of all variants of the LSTD

algorithm produced significantly different θs, with significantly different solution qual-

ities, just as observed in the small problem instance. Like the solutions from the small

problem, the difference in outcomes was a function of the policy produced, as those so-

lutions that performed well did so consistently. For each of the ten runs, the produced

policy was simulated to examine solution quality, and the algorithm that performed

the best in terms of the objective function was selected. The best LSTD algorithm

results for each combination of sampling technique, regression technique, and basis

functions are shown in Table 3.

Table 3. LSTD Percentage Improvement from Benchmark (Medium Problem Instance)

Results that failed to improve on the benchmark results are shown in red, while

results that show some level of improvement are shaded from red to green according
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to the quality of the solution. As expected, the use of instrumental variables improved

solution quality significantly. Latin hypercube sampling improved the solution qual-

ities for all sets of basis functions, but improved the solution quality of complex sets

of basis functions by a more significant margin than those with simpler sets. Given a

constant inner loop sample size, N , algorithm variants with smaller numbers of basis

functions have relatively larger amounts of information to decipher which features are

impacting the observed cost. The LHS design helps algorithms with those sets too,

but is at its most useful when the impact of these sample size limitations are exac-

erbated by large numbers of semi-correlated features. The algorithm variants with

Latin hypercube sampling, instrumental variables, and either second or fourth order

basis functions are the only LSTD algorithms that are able to provide policies that

improve the total cost, though several other variants show improvements in squared

deviation.

When observing the policies generated by the algorithms, it becomes apparent

that the LSTD algorithm simplifies the problem by generating solutions that are only

pseudo-dynamic. In effect, at least one of the decision policies remains static, while

the other decision policies are adjusted higher or lower based on the levels of shortages

or overages observed. This limitation is likely due to the value function being unable

to project onto the span of the basis functions, though additional samples may have

improved this problem.

Table 4. ADP Percentage Improvement from Benchmark (Medium Problem Instance)

Two versions of CAVE were applied. The first utilizes the m = 4 accessions

decisions and the n − 1 = 2 promotion decisions, while the second algorithm only
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models the m = 4 accessions decisions. The accessions-only variant of the CAVE

algorithm utilizes the benchmark policies for the n − 1 = 2 promotion decisions.

The results using these two algorithms are shown in Table 4. Allowing the promotion

rates to vary from the benchmark is a relaxation of a problem constraint. Though the

relaxation of a constraint indicates that the variant with promotion decisions should

be able to outperform the more constrained accessions-only model, the reverse is

observed. This can be attributed to a high level of interaction between the promotion

and accession policies that inhibits CAVE’s ability to converge to a quality or optimal

solution. This is a significant weakness, given that non-linear interactions also exist

between accession policies.

The LSTD algorithm with fourth order basis functions, instrumental variables

Bellman error minimization, and Latin hypercube sampling outperformed all other

algorithms tested. Additionally, this variant showed a statistically significant decrease

in shortages and a statistically insignificant decrease in overages, meaning that this

improvement was accomplished due to the dynamic nature of the solution without

detrimentally impacting overages or shortages. The CAVE algorithm with accession

policies also outperformed the benchmark policy by a statistically significant mar-

gin, with comparable performance to the second order basis function, instrumental

variable, Latin hypercube variant.

4.4 LAF Full Problem Definition & Results

For the large problem instance, the most promising algorithms, LSTD with 2nd

and 4th order basis functions and CAVE with accessions only, were applied to a

problem of identical size to the USAF problem. This problem is formulated with 54

AFSCs (m = 54), four grades (n = 4), and 30 CYOSs (q = 30). For the CAVE

algorithm, T = 60 due to the maximum 30 year career length. Three behavioral
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profiles were generated to represent significant differences among observed behaviors

of different AFSCs, including a high retention profile, a low retention profile, and a

standard profile. These profiles represent the varying levels of demand for the skill

sets of different career fields within the USAF. Each AFSC was assigned to one of

these profiles, then randomly increased or decreased in size according to a uniform

random distribution. Uniformly distributed unbiased variance was then introduced

to the retention rates of the AFSC’s behavioral profile to generate career fields that

are similar, but not identical. This procedure creates a heterogeneous mix of AFSCs

with different sizes and retention rates.

Table 5. ADP Percentage Improvement from Benchmark (Large Problem Instance)

As shown in Table 5, none of the LSTD algorithms tested could improve upon the

benchmark solution. In addition to the LSTD algorithm failing to generate policies

that outperform the benchmark, the subjective quality of the solutions were low.

Many observed policies were stationary over the simulated time, indicating that the

algorithm was unable to map the value function closely enough to modify the policy

dynamically, given the number of observations. This reinforces the earlier observation

that the value function does not appear to project onto the span of the basis functions

selected. Selection of alternate basis functions may improve this solution quality.

The CAVE algorithm demonstrates a statistically significant improvement over

the benchmark policy. For this problem instance, the total overages were reduced

by decreasing the number of accessions for a small number of accessions by one or

two. Overages above max allowable end strength were nearly eliminated, though

shortages increased significantly. Further analysis with alternative input parameters
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should demonstrate potential shortage and overage trade-offs by adjusting the end

strength criticality coefficient and the AFSC criticality coefficients.

4.5 Computational Performance

In order to accurately compare computational load, all computational time re-

sults are reported based on algorithm performance on a dual Intel Xeon E5-2650v2

workstation with 192 GB of RAM and MATLAB’s parallel computing toolbox using

32 threads.

Table 6. Computation Times (secs)

Table 6 shows significant fluctuations in computation time associated with the

number of basis functions and sampling method utilized. Additionally, LHS improved

the quality of the regression, but with a significant computational cost. This is due to

the significant computational effort required to generate LHS designs for large sample

sizes.

While both algorithms result in reasonable computation times, the allocation of

time is significantly different. Table 6 shows that approximate policy iteration with

LSTD requires a significant computational effort to develop values for the parameter,

θ, but can then generate a solution for any given state very quickly. CAVE can

solve for a specific state much more quickly without having to develop parameters
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to describe values for all possible states. However, this process must be repeated for

any given state evaluated, so simulating a large number of states eventually increases

computation time to surpass that of the LSTD algorithm. Figure 4 shows this trade-

off for the large problem instance.

Figure 4. Computation Load for Simulation Years
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V. Conclusions

5.1 Conclusions

The poor solution quality and inconsistent convergence of the LSTD algorithm

indicate that the basis functions selected are not appropriate for this problem. The

successes of the algorithm in improving policies for the medium problem indicate that,

despite these observed limitations, these basis functions may still be able to provide

improved solutions for the large problem instance with an excessive number of ob-

servations and significant additional computational resources. Additionally, these

basis functions seem to be somewhat related to the true set of basis functions, given

that consistent improvement in performance was observed when applying instrumen-

tal variables and space filling designs. These improvements indicate that additional

information within the context of these basis functions is beneficial.

Even with an acceptable set of basis functions, there is a trade-off in sample size

and sample efficiency that warrants further examination. For sample sizes that are

large enough to map a problem of this size, the computational efficiency of Latin

hypercube designs must be evaluated according to the level of improvement provided

in calculating the regression equation and the computational demand of the design

generation. This improvement and computational cost must be compared to the

improvement and computational cost of additional purely random samples, given that

these can improve solution quality without requiring design generation. Given the

significant computational burden of generating very large designs, both in processing

time and memory, case by case analysis is required in order to determine whether

the addition of a Latin hypercube design is more beneficial than a computationally

comparable number of additional samples.

CAVE has been shown to converge to optimal solutions for problems that do not
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have some form of non-linearity due to interaction between decisions (Topaloglu &

Powell, 2003). This presents as a single optimum. In this problem, each stochastic

gradient sampled is only accurate given the current values of all other decisions being

examined. This is a common problem for algorithms that utilize purely on-policy

search to explore a decision space that has multiple local optima. CAVE is able to

maximally exploit the information to find a local optima but does not have an internal

mechanism to explore alternative solutions. This explains why problem instances with

significant interactions, such as problems that include promotion decisions, suffer

decreased levels of performance. In the USAF officer sustainment problem, these

interactions exist between accessions and promotion decisions, simultaneous accession

decisions for different career fields, and decisions made at different time epochs. The

algorithm’s ability to improve solutions despite this non-linearity provides an idea

of how much improvement may be obtained with a form of this algorithm that is

modified to overcome the limitations of CAVE when applied to this type of problem

structure.

5.2 Future Work

To improve the policies generated by CAVE, two immediate solutions are appar-

ent. The first is the addition of some form of off-policy search. The use of a meta-

heuristic hybrid of algorithms such as TABU search, a genetic algorithm, or GRASP

to discover alternative starting locations may overcome this limitation. CAVE is then

able to refine this location and converge to an optima. With sufficient sampling, this

form of the algorithm is likely to enjoy a proof of convergence, given the proofs of

convergence for specific instances of the CAVE algorithm and many of the heuristic

search algorithms.

The second solution to the limitations of the CAVE algorithm for this type of
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problem is to separate the approximation of the overage and shortage functions. The

sampled stochastic gradient of the shortage function (marginal return) is then used in

conjunction with the sampled stochastic gradient of the overage function (marginal

cost) to evaluate which policies to adjust. This allows for the cost minimization

program to correctly ascertain the impact of increasing accessions in more than one

AFSC at a time. The current approach can result in many decisions changing simul-

taneously based on sampled information regarding overages that is no longer relevant

after a single change to policy. This approach allows for a policy modification to ad-

dress relatively important shortages while avoiding massive over-corrections to poli-

cies. However, this adaptation will not address nonlinearities due to the interactions

of decisions made at separate time epochs.

To improve the policies generated by the approximate policy iteration algorithm,

further effort in redefining these basis functions or investigating alternative regression

techniques is likely to be more productive that devoting the computational resources

to refine the parameter θ for the current implementation. Discovering a correct set of

basis functions is historically difficult for complex stochastic problems. Additionally,

a set of correct basis functions for a problem of this complexity may potentially be

prohibitively large. While further trial and error may improve this algorithm, the

most likely avenue for success in an approximate policy iteration framework is likely

to be a non-parametric technique such as kernel regression.
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VI. Appendix

6.1 Appendix A

Table 7. Variables Defined

x Selected Action
t Time Index
St Pre-decision state at time t
γ Discount factor
Sx
t Post-decision state at time t
f Individual basis function or feature
F Set of basis functions or features
θ Vector of weights associated with the selected basis functions
φ Vector of basis function values for a given post-decision state
N Number of policy evaluation loops or samples
Φ Matrix of recorded φs for N sampled post-decision states
Ct Vector of recorded costs for N sampled post-decision states
T Maximum number of time epochs
π A defined policy
Π The set of all possible policies
T The set of all time epochs
a1 AFSC or career field
a2 Grade
a3 CYOS or year group
a Vector of attributes a1, a2, and a3
h Attribute index
Ah Set of all possible attributes ah
A Set of all possible attributes
m Number of AFSCs or career fields modeled
n Number of grades modeled
q Number of CYOSs or year groups modeled
Sa,t Number of resources at time t for attribute vector a
d Decision index
D Set of all possible decisions
βd Upper bounds for decisions
ζd Lower bounds for decisions
ba1 AFSC criticality coefficient
Ra1,a2 Requirements by AFSC and grade
F Maximum allowable number of personnel in system (end strength)
e End strength criticality coefficient
j Transition index
ρa Retention parameter
j Policy improvement index
M Maximum number of policy improvement loops
i Policy evaluation index
α Stepsize parameter
ψ The maximum order of the polynomial used for a set of basis functions
g Combination of decision and polynomial
Zg Coefficient for a decision, polynomial combination within MINLP
kdt Breakpoint index
Kdt Set of breakpoints
kmax Maximum number of allowable breakpoints

νkdt Slope to the right of breakpoint kdt
ukdt Projection origin for breakpoint kdt
∆dt Observed sample gradient
Qdt Smoothing interval
εdt Interval size parameter
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6.2 Appendix B
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